How to Calculate a Processing UCA:

Below is an example of how to calculate a processing Unbundling Cost Allocation (UCA). This is not the only method by which the UCAs may be calculated. Other methods may be used provided they are in accordance with appropriate regulations. Regardless of the method used to unbundle, you are still subject to audit. *(Updated February 1, 2017)*

Data Collection

1) Obtain a Process Flow Diagram (PFD) of the processing plant that includes all major pieces of equipment and represents all major functions performed in the plant.

2) Determine the discharge mainline(s) at the tailgate of the plant and their requirements for pressure, CO₂, H₂S and H₂O. Some mainlines might also have a “total acid gas” or “total inert gas” specification. **These values are your Marketable Condition requirements for each mainline.** *Marketable condition for each specification (pressure, water content, contaminant content, etc) need only be met once. Residue boosting/recompression is never an allowed process.***

3) Obtain costs related to the processing of gas:
 a. Costs associated with capital investment (equipment, building costs and installation) within plant boundaries.
 b. Costs associated with operations, maintenance, and overhead.
 c. For a complete list of information needed, refer to the equipment on the [List-of-Engineering-Data-Needs-UCA.pdf](#).
 d. Match equipment costs to the PFD obtained in #1, making sure that there are no inconsistencies

4) Obtain inlet and outlet gas composition data and pressure for each compressor, dehydrator, sweetening unit and measurement point within the processing plant for the following (as appropriate):
 a. CO₂
 b. H₂S
 c. H₂O
d. Compressor discharge pressure

Compile and Organize Data

5) Take the PFD from #1 and assign the values obtained in #4 to each piece of equipment (example below only shows values for the first unit).
Figure 1: PFD

Inlet Conditions:
- H2O Content: 35 lb/MMscf
- CO2 Content: ~0%
- H2S Content: 0.1 gr/100scf
- Pressure: 600 psig

Pipeline Specs:
- H2O Content: 7 lb/MMscf
- CO2 Content: 2%
- H2S Content: 0.25 gr/100scf
- Pressure: 700 psig

Inlet Compression
- H2O Content: ~0 lb/MMscf
- CO2 Content: ~0%
- H2S Content: 0.1 gr/100scf
- Pressure: 800 psig

- H2O Content: ~0 lb/MMscf
- CO2 Content: ~0%
- H2S Content: 0.1 gr/100scf
- Pressure: 825 psig
6) Classify compressors, sweetening, dehydration and processing units as allowed, non-allowed and partially allowed based on the Marketable Condition Rule. The Marketable Condition Rule states that lessees must compress, remove sulfur, carbon dioxide and water content to mainline specifications at no cost to the lessor. The first piece of equipment to reach marketable condition is not allowed. Once the mainline specifications have been met for pressure, water, CO₂ or H₂S content, downstream equipment that perform the same function are allowed (residue compression is never allowed). For example, after the gas stream has been dehydrated to mainline specifications, downstream dehydrators are allowed.

7) If the first piece of equipment to reach Marketable Condition also exceeds the specifications, use the following method to calculate the allowed percentage of units that exceed Marketable Condition for the first time. (Note: There are two equations for calculation of the allowable percentage for compressors. When supportable data is available for both the inlet and outlet pressures for each compressor station, then use Option #1. If inlet pressure data to each compressor station is not available, and only outlet pressure is available, then use Option #2):

\[
\text{Allowed Percentage (dehydrator and amine units)}: \\
\left(\frac{\text{Marketable Condition Specification} - \text{Outlet Measurement}}{\text{Inlet Measurement}}\right) \times 100
\]

Option #1: Allowed Percentage (compressors):

\[
\left(\frac{\text{Discharge Pressure of Compressor} - \text{Marketable Condition Pressure}}{\text{Discharge Pressure of Compressor} - \text{Inlet Pressure of Compressor}}\right) \times 100
\]

Option #2: Allowed Percentage (compressors):

\[
\left(\frac{\text{Discharge Pressure of Unit} - \text{Marketable Condition Pressure}}{\text{Discharge Pressure of Unit}}\right) \times 100
\]

Example from schematic above (Figure 1):

Allowed Percentage of mol sieve dehydration:

\[
\left(\frac{7 \text{ lb } H_2O/mmScf - 0 \text{ lb } H_2O/mmScf}{35 \text{ lb } H_2O/mmScf}\right) \times 100 = 20\% \text{ Allowed}
\]

Option #1: Allowed Percentage of compression *:

\[
\left(\frac{850 \text{ psig} - 700 \text{ psig}}{850 \text{ psig} - 600 \text{ psig}}\right) \times 100 = 60\% \text{ Allowed}
\]
Option #2: Allowed Percentage of compression:

\[
\left(\frac{850 \text{ psig} - 700 \text{ psig}}{850 \text{ psig}}\right) \times 100 = 18\% \text{ Allowed}
\]

*Note: The remainder of this example uses Option #1.

8) Organize all cost data from #3 into the following categories

A. Compression facilities for refrigeration

B. All other compression except boosting

C. Any equipment whose primary function is the recovery of plant products, including NGLs

D. Equipment that supports NGL recovery (heat exchangers, etc.)

E. Meters

F. Storage tanks

G. Residue boosting compressors

H. Sweetening (amine) units

I. Dehydrators

9) Using Marketable Condition data from #2, the PFD and the methods outlined in #5, #6 and #7, calculate the allowed percentage of any equipment that serves a marketing function (removing water, H2S, CO2, increasing pressure).

10) Use the following table to classify the equipment from #8 into allowed and non-allowed categories:

<table>
<thead>
<tr>
<th>Allowed</th>
<th>Non-allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression facilities for refrigeration</td>
<td>Storage tanks</td>
</tr>
<tr>
<td>Pipe, valves and fittings</td>
<td>Residue boosting compressors</td>
</tr>
<tr>
<td>Absorbers, heat exchangers, coolers, chillers, fractionating columns,</td>
<td>Sweetening units (until marketable conditions specifications for CO2 and H2S have been met, see #6 and #7)</td>
</tr>
<tr>
<td>Any equipment whose primary function is the recovery of plant products, including NGLs</td>
<td>Compressors (until marketable conditions specifications for pressure have been met, see #6 and #7)</td>
</tr>
<tr>
<td>Meters</td>
<td>Dehydrators (until marketable conditions specifications for pressure have been met, see #6 and #7)</td>
</tr>
</tbody>
</table>
11) Determine whether your plant uses Depreciation and Return on Undepreciated Capital Investment (RUC) or Initial Depreciable Capital Investment multiplied by the BBB Rate to determine processing UCAs. Refer to 30 CFR §1206.161 for Federal Gas or 1206.180(b)(2) for Indian Gas.

12) The Return on Undepreciated Capital Investment is calculated by taking the undepreciated capital balance times a rate of return (The industrial rate for Standard & Poor’s BBB bond).

13) Calculate UCA’s using the following equations:

\[\text{UCA for allowed processing (using Depreciation and RUC method)} = \]
\[\frac{\text{Total Yearly Depreciation and RUC on Allowed Processing Units}}{\text{Total Yearly Depreciation and RUC on all Processing Units}} + \text{Allowable Operating and Maintainence} \]

\[\text{UCA for allowed processing (using Initial Capital Investment method)} = \]
\[\frac{\text{(Total Initial Depreciable Capital Investment of Allowed Processing Units)} \times \text{BBB Rate} + \text{Allowable Operating and Maintainence}}{\text{(Total Initial Depreciable Capital Investment of all Processing Units)} \times \text{BBB Rate} + \text{Total Operating and Maintainence}} \]

14) Example Using Depreciation and Return method:

<table>
<thead>
<tr>
<th>Equipment Name</th>
<th>Category of equipment</th>
<th>Percent Allowed</th>
<th>Total Yearly Depreciation and RUC</th>
<th>Total Yearly allowed Depreciation and RUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol Sieve Dehydration</td>
<td>Dehydration</td>
<td>20% Allowed</td>
<td>$20,230</td>
<td>$4,046</td>
</tr>
<tr>
<td>Heat Exchangers</td>
<td>NGL recovery support equipment</td>
<td>100%</td>
<td>$10,150</td>
<td>$10,150</td>
</tr>
<tr>
<td>Cold Separator</td>
<td>NGL recovery</td>
<td>100%</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>Inlet Compression</td>
<td>Compression</td>
<td>60%</td>
<td>$27,400</td>
<td>$16,440</td>
</tr>
<tr>
<td>Demethanizer</td>
<td>NGL recovery</td>
<td>100%</td>
<td>$2,560</td>
<td>$2,560</td>
</tr>
<tr>
<td>Turbo Expander</td>
<td>NGL recovery</td>
<td>100%</td>
<td>$18,460</td>
<td>$18,460</td>
</tr>
<tr>
<td>Residue Booster</td>
<td>Boosting equipment</td>
<td>0%</td>
<td>$25,490</td>
<td>$0</td>
</tr>
<tr>
<td>Meters</td>
<td>Meters</td>
<td>100%</td>
<td>$5,100</td>
<td>$5,100</td>
</tr>
<tr>
<td>Long term storage tanks</td>
<td>Storage tanks</td>
<td>0%</td>
<td>$4,230</td>
<td>$0</td>
</tr>
</tbody>
</table>
Depreciation and RUC values are for illustrative purposes only, yours will vary depending on BBB rates, depreciation methods, equipment life, etc.

<table>
<thead>
<tr>
<th>Description</th>
<th>Category</th>
<th>Percent Allowed</th>
<th>Total Yearly Operating and Maintenance</th>
<th>Allowed Yearly Operating and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol Sieve Dehydrator Operating and Maintenance</td>
<td>Dehydration</td>
<td>20% Allowed</td>
<td>50,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Turbo Expander Operating and Maintenance</td>
<td>NGL recovery</td>
<td>100%</td>
<td>$2,560</td>
<td>$2,560</td>
</tr>
<tr>
<td>Residue Boosting Operating and Maintenance</td>
<td>Boosting equipment</td>
<td>0%</td>
<td>$5,400</td>
<td>$0</td>
</tr>
<tr>
<td>Inlet Compression Operating and Maintenance</td>
<td>Compression</td>
<td>60%</td>
<td>$5,400</td>
<td>$3,240</td>
</tr>
</tbody>
</table>

| Total | $63,360 | $15,800 |

15) Sum all annual depreciation, return on undepreciated capital investment, operating and maintenance costs, as shown above.

16) Calculate the UCA for allowed processing:

\[
\text{UCA for allowed processing (using Depreciation and RUC method)} = \frac{\text{Total Yearly Depreciation and RUC on Allowed Processing Units} + \text{Allowable Operating and Maintenance}}{\text{Total Yearly Depreciation and RUC on all Processing Units} + \text{Total Operating and Maintenance}}
\]

\[
= \frac{57,756 + 15,800}{114,620 + 63,360} = 41\%\text{ allowed}
\]

17) Allowed and non-allowed UCAs should be calculated for each mainline in the system.

Repeat the above procedure for each mainline.

18) Apply the allowed UCAs to calculate your Transportation and Processing Allowance when reporting and paying royalties.

Note: The above UCA calculation is an example of the simplest case scenario. If your plant varies significantly from the above example and you need assistance please refer to 30 CFR §1206.158 -
§1206.160 Federal gas and 30 CFR §1206.179 – §1206.181 for Indian gas. If you need further assistance, please send an e-mail to onrrunbundling@onrr.gov.

For a complete list of what might be asked by ONRR in our attempt to unbundle see the List of Accounting and Cost Data Needs and List of Engineering Data Needs Document